
－Single－Device：$+5 \mathrm{~V} / 3.3 \mathrm{~V}$ input
－Remote Sense
－$+5 \mathrm{~V} \&+3.3 \mathrm{~V}$ Input Voltage
－Adjustable Output Voltage
－23－pin Space－Saving Package
－Solderable Copper Case
The PT6910 series is a series of high performance 12 watt，plus to minus voltage convertors that are designed to power the latest ECL $(-5.2 \mathrm{~V})$ and

GaAs（－2．0V）ICs from an existing +5.0 V or +3.3 V source．

These regulators are similar to the popular PT6900 series with the added feature of Power Trends＇unique solderable copper case．

A $330 \mu \mathrm{~F}$ electrolytic capacitor is required on both the input and output for proper operation．Also note that this product does not include short－ circuit protection．

Standard Application

$\mathrm{C}_{\text {in }}=$ Required $330 \mu \mathrm{~F}$ electrolytic
$\mathrm{C}_{\text {out }}=$ Required $330 \mu \mathrm{~F}$ electrolytic

Pin	Function	Pin	Function
1	Do not connect	13	GND
2	$\mathrm{V}_{\text {out }}$ Adjust	14	GND
3	$\mathrm{V}_{\text {in }}$	15	GND
4	$\mathrm{V}_{\text {in }}$	16	$\mathrm{V}_{\text {out }}$
5	$\mathrm{V}_{\text {in }}$	17	$\mathrm{V}_{\text {out }}$
6	$\mathrm{V}_{\text {in }}$	18	$\mathrm{V}_{\text {out }}$
7	$\mathrm{V}_{\text {in }}$	19	$\mathrm{V}_{\text {out }}$
8	Remote Sense GND	20	$\mathrm{V}_{\text {out }}$
9	GND	21	$\mathrm{V}_{\text {out }}$
10	GND	22	Remote Sense $\mathrm{V}_{\text {out }}$
11	GND	23	Do not connect
12	GND		

Ordering Information
+5 V Input $\quad+3.3 \mathrm{~V}$ Input $\quad V_{\text {out }}$

PT 6911 PT 6914D $=-2.0 \mathrm{~V}$ PT 6912 PT 6915 $=-5.2 \mathrm{~V}$ PT $6913 \square$

PT Series Suffix（PT1234X）
Case／Pin

C onfiguration

Vertical Through－Hole	N
Horizontal Through－Hole	A
Horizontal Surface Mount	C

（For dimensions and PC board layout， see Package Styles 1300 and 1310 ．）

Specifications

Characteristics （ $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ unless noted）	Symbols	Conditions		PT6910 SERIES			Units
				Min	Typ	Max	
Output Current	I_{0}	$\mathrm{T}_{\mathrm{a}}=+25^{\circ} \mathrm{C}$ ，natural convection					
		$\mathrm{V}_{\text {in }}=5.0 \mathrm{~V}$	$-2.0 \mathrm{~V} /-1.5 \mathrm{~V}$	$\begin{aligned} & 0.1(1) \\ & 0.1(1) \end{aligned}$		$\begin{aligned} & 6.0^{(2)} \\ & 3.5^{(2)} \end{aligned}$	A
		$\mathrm{V}_{\text {in }}=3.3 \mathrm{~V}$	$\begin{aligned} & \mathrm{V}_{\mathrm{o}}=-2.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{o}}=-5.2 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 0.1 \text { (1) } \\ & 0.1 \text { (1) } \end{aligned}$	－	$\begin{aligned} & \hline 5.0^{(2)} \\ & 2.5^{(2)} \end{aligned}$	$\begin{aligned} & \hline \mathrm{A} \\ & \mathrm{~A} \end{aligned}$
Input Voltage Range		$0.1 \mathrm{~A} \leq \mathrm{I}_{\mathrm{o}} \leq \mathrm{I}_{\text {max }} \quad$ PT6	912／PT6913	4.5	－	5.5	
			914／PT6915	3.1	－	3.6	V
Output Voltage Tolerance	$\Delta V_{\text {o }}$	$\begin{aligned} & \text { Nominal } V_{\text {in, }}, I_{o}=I_{\max } \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{a}} \leq+60^{\circ} \mathrm{C} \end{aligned}$		Vo－0．05	－	Vo＋0．05	V
Output Adjust Range	V_{o}	Pin 14 to V_{0} or GND	$\mathrm{V}_{\mathrm{o}}=-2.0 \mathrm{~V}$	－1．4	－	－4．4	V
			$\mathrm{V}_{\mathrm{o}}=-5.2 \mathrm{~V}$	－2．7	－	－6．5	
			$\mathrm{V}_{\mathrm{o}}=-1.5 \mathrm{~V}$	－1．2	－	－3．4	
Line Regulation	Regline	Over $V_{\text {in }}$ range， $\mathrm{I}_{0}=\mathrm{I}_{\text {max }}$		－	± 0.5	± 1.0	\％
Load Regulation	$\mathrm{Reg}_{\text {load }}$	$\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {nom }}, 0.1 \leq \mathrm{I}_{0} \leq \mathrm{I}_{\text {max }}$		－	± 0.5	± 1.0	\％
V_{o} Ripple／Noise	V_{n}	$\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {nom }}, \mathrm{I}_{\mathrm{o}}=\mathrm{I}_{\text {max }}$	$\begin{aligned} \mathrm{V}_{\mathrm{o}} & =-1.5 \mathrm{~V} /-2.0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{o}} & =-5.2 \mathrm{~V} \end{aligned}$	-	$\begin{aligned} & 40 \\ & 50 \\ & \hline \end{aligned}$	-	mV
Transient Response with $\mathrm{C}_{\text {out }}=330 \mu \mathrm{~F}$	$\begin{aligned} & \mathrm{t}_{\mathrm{tr}} \\ & \mathrm{~V}_{\mathrm{os}} \end{aligned}$	I_{o} step between $0.5 \mathrm{xI}_{\text {max }}$ and $\mathrm{I}_{\text {max }}$ V_{o} over／undershoot		二	$\begin{aligned} & 200 \\ & 200 \end{aligned}$	二	$\begin{aligned} & \mu \mathrm{Sec} \\ & \mathrm{mV} \end{aligned}$
Efficiency	η	$\mathrm{V}_{\text {in }}=+5 \mathrm{~V}, \mathrm{I}_{\mathrm{o}}=0.5 \mathrm{xI}_{\text {max }}$	$\mathrm{V}_{\mathrm{o}}=-1.5 \mathrm{~V}$	－	65	－	\％
			$\mathrm{V}_{\mathrm{o}}=-2.0 \mathrm{~V}$	－	70	－	
			$\mathrm{V}_{\mathrm{O}}=-5.2 \mathrm{~V}$	－	77	－	
		$\mathrm{V}_{\text {in }}=+3.3 \mathrm{~V}, \mathrm{I}_{\mathrm{o}}=0.5 \mathrm{xI}_{\text {max }}$	$\mathrm{Vo}=-2.0 \mathrm{~V}$	－	67	－	\％
			$\mathrm{Vo}=-5.2 \mathrm{~V}$	－	75	－	\％
Switching Frequency	$f_{\text {o }}$	Over $V_{\text {in }}$ and I_{0} ranges		500	－	600	kHz
Absolute Maximum Operating Temperature Range	Ta			0	－	＋85（2）	${ }^{\circ} \mathrm{C}$
Recommended Operating Temperature Range	Ta	Over $\mathrm{V}_{\text {in }}$ Range		0	－	＋60	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {s }}$			－40	－	＋125	${ }^{\circ} \mathrm{C}$
Weight	－	Vertical／Horizontal		－	26	－	grams

Notes：（1）ISR－will operate down to no load with reduced specifications．
（2）See Safe Operating Area curves，or consult the factory for the appropriate derating．

PT6911 Safe Operating Area, Vin =5.0V (See Note B)
PT6912 Safe Operating Area, Vin =5.0V (See Note B)

Note A: All data listed in the above graphs has been developed from actual products tested at $25^{\circ} \mathrm{C}$. This data is considered typical data for the DC-DC Converter. Note B: SOA curves represent the condition at which internal com-ponents are at or below manufacturere's maximum operating temperature.

Adjusting the Output Voltage of the PT6900/PT6910 Positive to Negative Converter Series

The negative output voltage of the Power Trends PT6900 Series ISRs may be adjusted higher or lower than the factory trimmed pre-set voltage with the addition of a single external resistor. Table 1 gives the allowable adjustment range for each model in the series as $\mathrm{V}_{\mathrm{a}}(\mathrm{min})$ and V_{a} (max).

Adjust Up: An increase in the output voltage is obtained by adding a resistor R2, between pin 2 (V_{o} adjust) and pin 8 (Remote Sense GND).

Adjust Down: Add a resistor (R1), between pin 2 (V_{o} adjust) and pin 22 (Remote Sense V_{o}).

Refer to Figure 1 and Table 2 for both the placement and value of the required resistor, either (R1) or R2 as appropriate.

Notes:

1. Only a single 1% resistor is required in either the (R1) or R2 location. Do not use (R1) and R2 simultaneously. Place the resistor as close to the ISR as possible.
2. Never connect capacitors from V_{o} adjust to either GND, $V_{\text {out }}$, or the Sense pins. Any capacitance added to the V_{o} adjust pin will affect the stability of the ISR.
3. If the sense pins are not being used, the resistors (R1) and R2 can be connected to $V_{\text {out }}$ and GND respectively.
4. An increase in the output voltage must be accompanied by a corresponding reduction in the maximum output current. The revised maximum output current must be reduced to the equivalent of 12 W atts.

$$
\text { i.e. } \quad I_{o u t}(\max)=\frac{12}{V_{a}} \text { Adc, }
$$

where V_{a} is the adjusted output voltage.

Figure 1

The respective values of (R1) [adjust down], and R2 [adjust up], can also be calculated using the following formulas.

$$
\begin{aligned}
& \text { (R1) }=\frac{24.9\left(V_{\mathrm{a}}-\mathrm{V}_{\mathrm{r}}\right)}{\left(\mathrm{V}_{\mathrm{o}}-\mathrm{V}_{\mathrm{a}}\right)}-\mathrm{R}_{\mathrm{s}} \mathrm{k} \Omega \\
& \text { R2 }=\frac{24.9 \mathrm{~V}_{\mathrm{r}}}{\left(\mathrm{~V}_{\mathrm{a}}-\mathrm{V}_{\mathrm{o}}\right)}-R_{\mathrm{s}} \quad \mathrm{k} \Omega
\end{aligned}
$$

Where:

$$
\begin{aligned}
\mathrm{V}_{\mathrm{o}} & =\text { Original output voltage } \\
\mathrm{V}_{\mathrm{a}} & =\text { Adjusted output voltage } \\
\mathrm{V}_{\mathrm{r}} & =\text { Reference voltage in Table } 1 \\
\mathrm{R}_{\mathrm{s}} & =\text { The resistance given in Table } 1
\end{aligned}
$$

PT6900/PT6910 ADJUSTMENT RANGE AND FORMULA PARAMETERS			
Series Pt \#			
5.0V Bus	PT6903/13	PT6901/11	PT6902/12
3.3 V Bus		PT6904/14	PT6905/15
V_{0} (nom)	-1.5V	-2.0V	-5.2V
$\mathrm{Va}_{\mathrm{a}}(\mathrm{min})$	-1.2V	-1.4V	-2.7V
$\mathrm{Va}_{\mathrm{a}}(\max)$	-3.4V	$-4.5 \mathrm{~V}$	-6.5V
V_{r}	-1.0V	-1.0V	-0.92V
RS (k)	12.7	10.0	17.4

Application Notes coninued

Table 2

PT6900/PT6910 ADJUSTMENT RESISTOR VALUES				Series Pt \#		
Series Pt \#						
5.0V Bus	PT6903/13	PT6901/11	PT6902/12	5.0V Bus	PT6901/11	PT6902/12
3.3 V Bus		PT6904/14	PT6905/15	3.3V Bus	PT6904/14	PT6905/15
V_{0} (nom)	-1.5Vdc	-2.0Vdc	-5.2Vdc	V_{0} (nom)	-2.0Vdc	-5.2Vdc
V_{a} (req'd)				V_{a} (req'd)		
-1.2	(3.9) $\mathrm{k} \Omega$			-3.9	$3.1 \mathrm{k} \Omega$	(39.7)k Ω
-1.3	(24.7) $\mathrm{k} \Omega$			-4.0	$2.5 \mathrm{k} \Omega$	(46.5) $\mathrm{k} \Omega$
-1.4	(86.9)k k ,	(6.0) $\mathrm{k} \Omega$		-4.1	$1.9 \mathrm{k} \Omega$	(54.6) $\mathrm{k} \Omega$
-1.5		(14.9) $\mathrm{k} \Omega$		-4.2	$1.3 \mathrm{k} \Omega$	(64.3) $\mathrm{k} \Omega$
-1.6	$236.0 \mathrm{k} \Omega$	(27.4)k Ω		-4.3	$0.8 \mathrm{k} \Omega$	(76.1) $\mathrm{k} \Omega$
-1.7	$112.0 \mathrm{k} \Omega$	(48.1) $\mathrm{k} \Omega$		-4.4	$0.4 \mathrm{k} \Omega$	(90.9) $\mathrm{k} \Omega$
-1.8	$70.3 \mathrm{k} \Omega$	(89.6) $\mathrm{k} \Omega$		-4.5	$0.0 \mathrm{k} \Omega$	(106.0) $\mathrm{k} \Omega$
-1.9	$49.6 \mathrm{k} \Omega$	(214.0) $\mathrm{k} \Omega$		-4.6		(135.0) $\mathrm{k} \Omega$
-2.0	$37.1 \mathrm{k} \Omega$			-4.7		(171.0) $\mathrm{k} \Omega$
-2.1	$28.8 \mathrm{k} \Omega$	$239.0 \mathrm{k} \Omega$		-4.8		(224.0) $\mathrm{k} \Omega$
-2.2	$22.9 \mathrm{k} \Omega$	$115.0 \mathrm{k} \Omega$		-4.9		(313.0) $\mathrm{k} \Omega$
-2.3	$18.4 \mathrm{k} \Omega$	$73.0 \mathrm{k} \Omega$		-5.0		(491.0) $\mathrm{k} \Omega$
-2.4	$15.0 \mathrm{k} \Omega$	$52.3 \mathrm{k} \Omega$		-5.1		(1020.0) $\mathrm{k} \Omega$
-2.5	$12.2 \mathrm{k} \Omega$	$39.8 \mathrm{k} \Omega$		-5.2		
-2.6	$9.9 \mathrm{k} \Omega$	$31.5 \mathrm{k} \Omega$		-5.3		$212.0 \mathrm{k} \Omega$
-2.7	$8.1 \mathrm{k} \Omega$	$25.6 \mathrm{k} \Omega$	(0.3) $\mathrm{k} \Omega$	-5.4		$97.1 \mathrm{k} \Omega$
-2.8	$6.5 \mathrm{k} \Omega$	$21.1 \mathrm{k} \Omega$	(2.1) $\mathrm{k} \Omega$	-5.5		$59.0 \mathrm{k} \Omega$
-2.9	$5.1 \mathrm{k} \Omega$	$17.7 \mathrm{k} \Omega$	(4.0)k Ω	-5.6		$39.9 \mathrm{k} \Omega$
-3.0	$3.9 \mathrm{k} \Omega$	$14.9 \mathrm{k} \Omega$	(6.1) $\mathrm{k} \Omega$	-5.7		$28.4 \mathrm{k} \Omega$
-3.1	$2.9 \mathrm{k} \Omega$	$12.6 \mathrm{k} \Omega$	(8.5) $\mathrm{k} \Omega$	-5.8		$20.8 \mathrm{k} \Omega$
-3.2	$2.0 \mathrm{k} \Omega$	$10.8 \mathrm{k} \Omega$	(11.0)k k ,	-5.9		$15.3 \mathrm{k} \Omega$
-3.3	$1.1 \mathrm{k} \Omega$	$9.2 \mathrm{k} \Omega$	(13.8) $\mathrm{k} \Omega$	-6.0		$11.2 \mathrm{k} \Omega$
-3.4	$0.4 \mathrm{k} \Omega$	$7.8 \mathrm{k} \Omega$	(16.9)k Ω	-6.1		$8.1 \mathrm{k} \Omega$
-3.5		$6.6 \mathrm{k} \Omega$	(20.4) $\mathrm{k} \Omega$	-6.2		$5.5 \mathrm{k} \Omega$
-3.6		$5.6 \mathrm{k} \Omega$	(24.3) $\mathrm{k} \Omega$	-6.3		$3.4 \mathrm{k} \Omega$
-3.7		$4.7 \mathrm{k} \Omega$	(28.7) $\mathrm{k} \Omega$	-6.4		$1.7 \mathrm{k} \Omega$
-3.8		$3.8 \mathrm{k} \Omega$	(33.8) $\mathrm{k} \Omega$	-6.5		$0.2 \mathrm{k} \Omega$
R1 = (Blue)	$\mathrm{R} 2=$					

